Abstract

Arabinoxylans (AX) are cell wall polysaccharides of complex structure involved in many aspects of wheat flour end uses. The study of the variations of AX structure can lead to the identification of genes involved in their biosynthesis, and thus in the control of the various aspects of grain quality related to their presence. A method is proposed to identify AX variations directly in whole grain by enzymatic degradation. An endoxylanase from Trichoderma viride was used to extract AX from a collection of 20 wheat cultivars (Triticum aestivum L.). Enzymatic degradation products were analyzed by HPAEC and multivariate analysis techniques (principal component analysis, canonical correlation analysis, and cluster analysis) were applied to analyze chromatographic data. The method evidenced variations in the proportion of mono- and disubstitution of the xylan backbone by arabinose side chains, allowing classification of the different varieties according to the structural features of AX. A similar classification was obtained starting from flour or whole grain, indicating that the method was specific of AX from endosperm tissues. In conclusion, the method combining endoxylanase treatment of wheat grain and the analysis of degradation products, e.g., enzymatic fingerprinting, can be applied to collections of wheat cultivars, and possibly other cereals in order to establish quantitative trait loci related to the biosynthesis of AX.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.