Abstract

AbstractA 2‐cell embedding of a graph Γ into a closed (orientable or nonorientable) surface is called regular if its automorphism group acts regularly on the flags. In this article, we classify the regular embeddings of the complete multipartite graph . We show that if the number of partite sets is greater than 3, there exists no such embedding; and if the number of partite sets is 3, for any n, there exist one orientable regular embedding and one nonorientable regular embedding of up to isomorphism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.