Abstract

The COVID-19 epidemic has created highly unprocessed emotions that trigger stress, anxiety, or panic attacks. These attacks exhibit physical symptoms that may easily lead to misdiagnosis. Deep-learning (DL)-based classification approaches for emotion detection based on electroencephalography (EEG) signals are computationally costly. Nowadays, limiting memory potency, considerable training, and hyperparameter optimization are always needed for DL models. As a result, they are inappropriate for real-time applications, which require large computational resources to detect anxiety and stress through EEG signals. However, a two-dimensional residual separable convolution network (RCN) architecture can considerably enhance the efficiency of parameter use and calculation time. The primary aim of this study was to detect emotions in undergraduate students who had recently experienced COVID-19 by analyzing EEG signals. A novel separable convolution model that combines residual connection (RCN-L) and light gradient boosting machine (LightGBM) techniques was developed. To evaluate the performance, this paper used different statistical metrics. The RCN-L achieved an accuracy (ACC) of 0.9263, a sensitivity (SE) of 0.9246, a specificity (SP) of 0.9282, an F1-score of 0.9264, and an area under the curve (AUC) of 0.9263 when compared to other approaches. In the proposed RCN-L system, the network avoids the tedious detection and classification process for post-COVID-19 emotions while still achieving impressive network training performance and a significant reduction in learnable parameters. This paper also concludes that the emotions of students are highly impacted by COVID-19 scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.