Abstract

Parkinson's disease (PD) is a degenerative nervous system disorder involving motor disturbances. Motor alterations affect the gait according to the progression of PD and can be used by experts in movement disorders to rate the severity of the disease. However, this rating depends on the expertise of the clinical specialist. Therefore, the diagnosis may be inaccurate, particularly in the early stages of PD where abnormal gait patterns can result from normal aging or other medical conditions. Consequently, several classification systems have been developed to enhance PD diagnosis. In this paper, a PD gait severity classification algorithm was developed using vertical ground reaction force (VGRF) signals. The VGRF records used are from a public database that includes 93 PD patients and 72 healthy controls adults. The work presented here focuses on modeling each foot's gait stance phase signals using a modified convolutional long deep neural network (CLDNN) architecture. Subsequently, the results of each model are combined to predict PD severity. The classifier performance was evaluated using ten-fold cross-validation. The best-weighted accuracies obtained were 99.296(0.128)% and 99.343(0.182)%, with the Hoehn-Yahr and UPDRS scales, respectively, outperforming previous results presented in the literature. The classifier proposed here can effectively differentiate gait patterns of different PD severity levels based on gait signals of the stance phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.