Abstract

<p style='text-indent:20px;'>Traveling wave solutions for the one-dimensional degenerate parabolic equations are considered. The purpose of this paper is to classify the nonnegative traveling wave solutions including sense of weak solutions of these equations and to present their existence, information about their shape and asymptotic behavior. These are studied by applying the framework that combines Poincaré compactification and classical dynamical systems theory. We also aim to use these results to generalize the results of our previous studies. The key to this is the introduction of a transformation, which overcomes the generalization difficulties faced by these studies.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.