Abstract

Pattern classification algorithm is the crucial step in developing brain-computer interface (BCI) applications. In this paper, a hierarchical support vector machine (HSVM) algorithm is proposed to address an EEG-based four-class motor imagery classification task. Wavelet packet transform is employed to decompose raw EEG signals. Thereafter, EEG signals with effective frequency sub-bands are grouped and reconstructed. EEG feature vectors are extracted from the reconstructed EEG signals with one versus the rest common spatial patterns (OVR-CSP) and one versus one common spatial patterns (OVO-CSP). Then, a two-layer HSVM algorithm is designed for the classification of these EEG feature vectors, where "OVO" classifiers are used in the first layer and "OVR" in the second layer. A public dataset (BCI Competition IV-II-a)is employed to validate the proposed method. Fivefold cross-validation results demonstrate that the average accuracy of classification in the first layer and the second layer is 67.5±17.7% and 60.3±14.7%, respectively. The average accuracy of the classification is 64.4±16.7% overall. These results show that the proposed method is effective for four-class motor imagery classification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.