Abstract

We present an algorithmic classification of the irreps of the $N$-extended one-dimensional supersymmetry algebra linearly realized on a finite number of fields. Our work is based on the 1-to-1 \cite{pt} correspondence between Weyl-type Clifford algebras (whose irreps are fully classified) and classes of irreps of the $N$-extended 1D supersymmetry. The complete classification of irreps is presented up to $N\leq 10$. The fields of an irrep are accommodated in $l$ different spin states. N=10 is the minimal value admitting length $l>4$ irreps. The classification of length-4 irreps of the N=12 and {\em real} N=11 extended supersymmetries is also explicitly presented.\par Tensoring irreps allows us to systematically construct manifestly ($N$-extended) supersymmetric multi-linear invariants {\em without} introducing a superspace formalism. Multi-linear invariants can be constructed both for {\em unconstrained} and {\em multi-linearly constrained} fields. A whole class of off-shell invariant actions are produced in association with each irreducible representation. The explicit example of the N=8 off-shell action of the $(1,8,7)$ multiplet is presented.\par Tensoring zero-energy irreps leads us to the notion of the {\em fusion algebra} of the 1D $N$-extended supersymmetric vacua.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.