Abstract

A multi-layer convolutional neural network (MCNN) with hyperparameter optimization (HyperMCNN) is proposed for classifying human electrocardiograms (ECGs). For performance tests of the HyperMCNN, ECG recordings for patients with cardiac arrhythmia (ARR), congestive heart failure (CHF), and normal sinus rhythm (NSR) were obtained from three PhysioNet databases: MIT-BIH Arrhythmia Database, BIDMC Congestive Heart Failure Database, and MIT-BIH Normal Sinus Rhythm Database, respectively. The MCNN hyperparameters in convolutional layers included number of filters, filter size, padding, and filter stride. The hyperparameters in max-pooling layers were pooling size and pooling stride. Gradient method was also a hyperparameter used to train the MCNN model. Uniform experimental design approach was used to optimize the hyperparameter combination for the MCNN. In performance tests, the resulting 16-layer CNN with an appropriate hyperparameter combination (16-layer HyperMCNN) was used to distinguish among ARR, CHF, and NSR. The experimental results showed that the average correct rate and standard deviation obtained by the 16-layer HyperMCNN were superior to those obtained by a 16-layer CNN with a hyperparameter combination given by Matlab examples. Furthermore, in terms of performance in distinguishing among ARR, CHF, and NSR, the 16-layer HyperMCNN was superior to the 25-layer AlexNet, which was the neural network that had the best image identification performance in the ImageNet Large Scale Visual Recognition Challenge in 2012.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.