Abstract

This paper describes hand motion detection and the method for classification of 32-component EEG signals. This method is based on using recurrent convolution neural network as multi-class classifier. In this paper, we propose and empirically evaluate several architectures of recurrent convolutional neural network, and show advantages of using recurrent convolutional neural network for investigating problem. The results prove that this type of classifier can effectively distinguish characteristic features in the initial EEG signals and provide correct values of neural network outputs. Using recurrent convolution layer instead of the standard convolution layer can significantly improve the quality of classification. Adding recurrent connections for convolutional layer neurons increases the depth of the network, maintaining a constant number of parameters by weight sharing between layers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.