Abstract
<p class="15">The high-quality annotated training samples in medical image processing have limited the development of deep neural networks in their field. This paper designs and proposes an integrated method for classifying and detecting diabetic retinopathy based on a multi-scale shallow neural network. The method consists of multiple shallow neural network base learners, which extract pathological features under different receptive fields. The integrated learning strategy proposed is used to optimize the integration and finally realize the classification and detection of diabetic retinopathy. In addition, to verify the effectiveness of the method in this paper on a small sample data-set, based on the two-dimensional entropy of the image, multiple sub-datasets are constructed for verification. The results show that, compared with the existing methods, the integrated method for the classification and detection of diabetic retinopathy proposed in this paper has a good detection effect on a small sample data-set.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.