Abstract

Molecular dynamics simulations of linear models interacting through a dipolar Kihara intermolecular potential are presented. Molecular orientation correlations are used to calculate the orientational factor kappa squared in the resonance energy transfer (RET) as a function of the intermolecular separation. The distance, R 0 (2/3), at which the simulated systems show an isotropic behavior is calculated and an analysis of the dependence of R 0 (2/3) on microscopic properties (molecular aspect ratio and dipole moment) as well on thermodynamics (temperature and density) is presented. An explanation of the use of metallic cations as probes in RET is given and some relations of our models with biological molecules are pointed out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.