Abstract

Protocols for non-adiabatic quantum control often require the use of classical time varying fields. Assessing the thermodynamic cost of such protocols, however, is far from trivial. In this letter we study the irreversible entropy produced by the classical apparatus generating the control fields, thus providing a direct link between the cost of a control protocol and dissipation. We focus, in particular, on the case of time-dependent magnetic fields and shortcuts to adiabaticity. Our results are showcased with two experimentally realisable case studies: the Landau-Zener model of a spin-1/2 particle in a magnetic field and an ion confined in a Penning trap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.