Abstract
Even simple fluids on simple substrates can exhibit very rich surface phase behaviour. To illustrate this, we consider fluid adsorption on a planar wall chemically patterned with a deep stripe of a different material. In this system, two phase transitions compete: unbending and pre-wetting. Using microscopic density-functional theory, we show that, for thin stripes, the lines of these two phase transitions may merge, leading to a new two-dimensional-like wetting transition occurring along the walls. The influence of intermolecular forces and interfacial fluctuations on this phase transition and at complete pre-wetting are considered in detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.