Abstract
We explain the mechanism leading to directed chaotic transport in Hamiltonian systems with spatial and temporal periodicity. We show that a mixed phase space comprising both regular and chaotic motion is required and we derive a classical sum rule which allows one to predict the chaotic transport velocity from properties of regular phase-space components. Transport in quantum Hamiltonian ratchets arises by the same mechanism as long as uncertainty allows one to resolve the classical phase-space structure. We derive a quantum sum rule analogous to the classical one, based on the relation between quantum transport and band structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.