Abstract

This paper describes a new method to classify sleep apnea syndrome (SAS) by using wavelet transforms and an artificial neural network (ANN). The network was trained and tested for different momentum coefficients. The abdominal respiration signals are separated into spectral components by using multi-resolution wavelet transforms. These spectral components are applied to the inputs of the artificial neural network. Then the neural network was configured to give three outputs to classify the SAS situation of the patient. The apnea can be broadly classified into three types: obstructive sleep apnea (OSA), central sleep apnea (CSA) and mixed sleep apnea (MSA). During OSA, the airway is blocked while respiratory efforts continue. During CSA the airway is open, however, there are no respiratory efforts. In this paper we aim to classify sleep apnea in one of three basic types: obstructive, central and mixed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.