Abstract

Context. The processes responsible for galaxy evolution in different environments as a function of galaxy mass remain heavily debated. Rich galaxy clusters are ideal laboratories in which to distinguish the role of environmental versus mass quenching because they consist of a full range of galaxies and environments. Aims. Using the CLASH-VLT survey, we assembled an unprecedentedly large sample of 1234 spectroscopically confirmed members in Abell S1063. We found a dynamically complex structure at ⟨zcl⟩ = 0.3457 with a velocity dispersion σv = 1380−32+26 km s−1. We investigated cluster environmental and dynamical effects by analysing the projected phase-space diagram and the orbits as a function of galaxy spectral properties. Methods. We classified cluster galaxies according to the presence and strength of the [OII] emission line, the strength of the Hδ absorption line, and colours. We investigated the relation between the spectral classes of galaxies and their position in the projected phase-space diagram. We separately analysed red and blue galaxy orbits. By correlating the observed positions and velocities with the projected phase-space constructed from simulations, we constrained the accretion redshift of galaxies with different spectral types. Results. Passive galaxies are mainly located in the virialised region, while emission-line galaxies lie beyond r200 and are accreted into the cluster at a later time. Emission-line and post-starburst galaxies show an asymmetric distribution in projected phase-space within r200; emission-line galaxies are prominent at Δv/σ ≲ −1.5 and post-starburst galaxies at Δv/σ ≳ 1.5, suggesting that backsplash galaxies lie at high positive velocities. We find that low-mass passive galaxies are accreted into the cluster before high-mass galaxies. This suggests that we observe as passives only the low-mass galaxies that are accreted early into the cluster as blue galaxies. They had the time to quench their star formation. We also find that red galaxies move on more radial orbits than blue galaxies. This can be explained if infalling galaxies can remain blue by moving on tangential orbits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.