Abstract

Swelling of human red cells activates a putative K-Cl cotransport that is not present at normal cell volume and that disappears after several hours. To determine whether regulatory volume decrease (RVD) is occurring in human erythrocytes and is responsible for the inactivation of K-Cl cotransport, the relationship between cell volume and the inactivation and reactivation of volume-sensitive (VS) K-Cl cotransport was studied. VS K influx into high K cells was transient, whereas influx into low K cells (prepared with nystatin), which are unable to shrink via K efflux, remained fully activated. Likewise, VS K efflux into hypotonic medium disappeared after 100 min in a low K medium but remained activated in a high K medium that prevented cell shrinkage. Cells that had been preincubated in hypotonic medium to inactivate VS K-Cl cotransport showed no significant recovery of VS cotransport after a 6-h incubation in isotonic medium but showed full restoration of VS cotransport after treatment with nystatin in isotonic medium to reequilibrate cell water. A pure fraction of volume-regulating (VR) cells was subsequently isolated by preincubating red cells in hypotonic medium and then subjecting them to further hypotonicity to lyse all non-VR cells. The 2.5% of cells that remained consisted of 16% reticulocytes and exhibited a Cl-dependent RVD in hypotonic medium. VS K-Cl cotransport was enriched 10-fold and Na-K-Cl cotransport was enriched 12-fold in these cells, whereas the enrichment of N-ethylmaleimide (NEM)-activated K-Cl cotransport was only threefold.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.