Abstract

Sea level rise and high-impact coastal hazards due to on-going and projected climate change dramatically affect many coastal urban areas worldwide, including those with the highest urbanization growth rates. To develop tailored coastal climate services that can inform decision makers on climate adaptation in coastal cities, a better understanding and modeling of multifaceted urban dynamics is important. We develop a coastal urban model family, where the population growth and urbanization rates are modeled in the framework of diffusion over the half-bounded and bounded domains, and apply the maximum entropy principle to the latter case. Population density distributions are derived analytically whenever possible. Steady-state wave solutions balancing the width of inhabited coastal zones, with the skewed distributions maximizing population entropy, might be responsible for the coastward migrations outstripping the demographic development of the hinterland. With appropriate modifications of boundary conditions, the developed family of diffusion models can describe coastal urban dynamics affected by climate change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.