Abstract
A new drug delivery formulation, biodegradable glycolic acid–lactic acid copolymer (PGLA) microspheres incorporating cisplatin (CDDP-MS) has been developed for the treatment of peritoneal carcinomatosis. Scanning electron microscopy showed that CDDP-MS has a smooth surface and few cisplatin crystals in the hollow. An electron probe micro analyzer revealed that cisplatin was located mainly in the matrix in the state of a molecule. Release profile in vitro of CDDP from microspheres showed that the initial burst was 21.2% and the remaining CDDP was released slowly thenceforth over 14 days. Hydrolysis of CDDP-MS progresses very slowly during the 14 days, but there was no morphological change in the SEM views. The dimethylformamide content entrapped within CDDP-MS, determined by a gas chromatography, was 136 ppm at the evaporation temperature of 47 °C. The 50% lethal dose value of CDDP-MS, calculated by the Litchfield–Wilcoxon method, was reduced to 57% of the cisplatin solution. Therapeutic experiment on mice with peritoneal carcinomatosis showed that CDDP-MS did not enhance therapeutic effect as compared with the same dose dosage of a cisplatin aqueous solution but large quantities of cisplatin could be given in case of CDDP-MS owing to less toxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.