Abstract

Genome-wide association studies have reported 11 regions conferring risk of high-grade serous epithelial ovarian cancer (HGSOC). Expression quantitative trait locus (eQTL) analyses can identify candidate susceptibility genes at risk loci. Here we evaluate cis-eQTL associations at 47 regions associated with HGSOC risk (P≤10−5). For three cis-eQTL associations (P<1.4 × 10−3, FDR<0.05) at 1p36 (CDC42), 1p34 (CDCA8) and 2q31 (HOXD9), we evaluate the functional role of each candidate by perturbing expression of each gene in HGSOC precursor cells. Overexpression of HOXD9 increases anchorage-independent growth, shortens population-doubling time and reduces contact inhibition. Chromosome conformation capture identifies an interaction between rs2857532 and the HOXD9 promoter, suggesting this SNP is a leading causal variant. Transcriptomic profiling after HOXD9 overexpression reveals enrichment of HGSOC risk variants within HOXD9 target genes (P=6 × 10−10 for risk variants (P<10−4) within 10 kb of a HOXD9 target gene in ovarian cells), suggesting a broader role for this network in genetic susceptibility to HGSOC.

Highlights

  • Genome-wide association studies have reported 11 regions conferring risk of high-grade serous epithelial ovarian cancer (HGSOC)

  • We evaluate whether Expression quantitative trait locus (eQTL) analysis performed in primary HGSOCs can identify candidate ovarian cancer susceptibility genes at genomic regions showing evidence of susceptibility to HGSOC (P value for association o1 Â 10 À 5)

  • Having identified significant cis-eQTL associations, we evaluate the role of candidate genes in the early stage development of HGSOC through targeted perturbation of candidate gene expression in two HGSOC precursor cell types and use chromosome conformation capture assays to identify physical interactions between a target gene and risk-associated single nucleotide polymorphisms (SNPs)

Read more

Summary

Introduction

Genome-wide association studies have reported 11 regions conferring risk of high-grade serous epithelial ovarian cancer (HGSOC). One approach to identify additional HGSOC risk alleles may be to use biological and functional information to provide additional evidence for risk associations in regions that are sub-genome-wide significant in genetic association studies. Having identified significant cis-eQTL associations, we evaluate the role of candidate genes in the early stage development of HGSOC through targeted perturbation of candidate gene expression in two HGSOC precursor cell types and use chromosome conformation capture assays to identify physical interactions between a target gene and risk-associated SNPs. we use transcriptomic profiling to identify downstream targets of validated susceptibility genes, to identify common biological pathways associated with neoplastic development, and to provide functional evidence supporting additional potential HGSOC susceptibility loci

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.