Abstract

Both α- and γ-zirconium phosphate were examined for use as ion exchangers for recovery of rare earth elements. Trivalent rare earth elements can be partially substituted for protons in the interlayer space, and γ-zirconium phosphate shows a much better ion exchange competency than α-zirconium phosphate. The exchanged cation of the rare earth elements might be related to different amounts of oxygen from P-OH and H2O, and these rare earth elements were thus positioned at a different separations from the zirconium phosphate layer. The radial structure function (RSF) curve from extended X-ray absorption fine structure data implied that the calibrated M-O distance and coordination number changed with the ionic radius. The calibrated M-O distances from RSF were 2.52, 2.42, 2.38, and 2.28 for La, Eu, Dy, and Yb, respectively. The coordination numbers of oxygen for Yb were approximately 7 and greater than 10 for La and Eu, respectively. These smaller coordination numbers for smaller cations may result from the strong interaction between the cations and the zirconium phosphate layer. The Debye-Waller factor also increased with an increase in the ionic radius. These factors show a strong relation to the coordination state of rare earth elements in the unit cell of the γ-zirconium phosphate and to the interaction strength.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.