Abstract

The problem of circumnavigating a moving target in a three dimensional setting by a network of agents while avoiding inter-agent collisions is addressed in this paper. A distributed control strategy is proposed for the multi-agent system to achieve three objectives: reaching the target plane with predesigned orientation, circulating around the target with prescribed radius, and avoiding collisions among agents. After representing the control objectives by three potential functions, the gradient fields of which are orthogonal to each other, the control law then is developed using the gradient vector field-based approach. The novelty of the proposed controller lies in the orthogonality of the vector fields, which decouples the control objectives and ensures global asymptotic convergence to the desired motion, subject to some mild initial condition constraints. The stability and convergence analysis are presented using Lyapunov tools, and the effectiveness of the proposed control strategy is demonstrated through numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.