Abstract

The study makes an approach to the problem of circumlunar spacecraft navigation using the measurements from the global navigation satellite systems (GNSS) GLONASS, GPS, Galileo and BeiDou. Algorithms have been developed for determining the orbits of low- and high-orbit circumlunar spacecraft, based on the method of dynamic filtering of pseudo-range measurements from “reverse” navigation satellites (NS). The solution to the navigation problem has been simulated by the measurements from four GNSS, and by those from the NS of GLONASS and GPS only. Accuracy and dynamic characteristics of the obtained solutions have been determined and compared to similar solutions for geostationary spacecraft.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.