Abstract
Intramuscular fat (IMF) content plays an important role in pork quality. Circular RNAs (circRNAs) implicate various biological processes; however, the regulatory mechanisms and functions of circRNAs in porcine IMF remains elusive. Hence, the study assessed the circRNA expression profiling in the longissimus dorsi muscle of pigs with high (H) and low (L) IMF content to unravel their regulatory functions in improving meat quality. The RNA sequencing analysis identified 29,732 circRNAs from six sampled pigs, most of which were exon-derived. In the muscle, 336 were differentially expressed (DE) between the H and L IMF groups; 196 circRNAs were upregulated, and 140 were downregulated. Subsequent qRT-PCR validation of 10 DE circRNAs revealed expression patterns consistent with the RNA-seq data. Gene ontology and KEGG enrichment analysis revealed that most significantly enriched DE circRNAs' host genes were linked to lipid metabolism and adipogenesis processes. The circRNA-miRNA regulatory network analysis found several circRNAs targeting miRNAs associated with adipogenesis. Finally, a novel circRNA, circPPARA, was identified with the expression positively correlated with the IMF content. Detailed analysis revealed that circPPARA was formed via head-to-tail splicing and was more stable than the linear PPARA, predominantly located in the cytoplasm. Functional studies using overexpression and siRNA constructs demonstrated that circPPARA promotes differentiation and hinders the proliferation of porcine intramuscular preadipocytes. Moreover, the dual-luciferase assay revealed that circPPARA adsorbed miR-429 and miR-200b, thereby promoting intramuscular adipogenesis in pigs. Our results identified a candidate circRNA, circPPARA, that affects porcine IMF content. The study provides knowledge of the regulatory functions of circRNAs in intramuscular adipogenesis and abundant resource for future research on circRNAs in pigs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.