Abstract

The partially synchronized cell system of the hamster cheek pouch epithelium shows a characteristic diurnal rhythm of cell proliferation. Bolus injections of methotrexate (Mtx) in both lethal (10 g/m2) and non-lethal (2 g/m2) doses were found to inhibit cell-cycle progression primarily by impairing the G1/S transition. The results were obtained by flow cytometric DNA analysis. The inhibitory effect of Mtx manifested itself as a relative decrease of the S fraction (drug-effector phase), and was found to be dependent both on the dose and on the time of the day it was given. A bolus injection of Mtx was given either at 1200 hr (when a minimal number of cells are in S phase) or at 0200 hr (when a maximum number of cells are in S phase). The greatest cumulative decrease in S fraction was seen when the injection was given at 1200 hr. The time between injection and the effect (seen as a decrease in S fraction) was independent of the time of the Mtx injection, but seemed instead to be related to the natural diurnal period of increasing flux from G1 to S phase (at the onset of the dark period). The main effect (the relative decrease in S fraction) was repeated during the following 24-hr period, pointing to a protracted effect of Mtx on G1 cells. G1 cells affected by the initial high Mtx plasma concentration seem to be responsible for the reduced influx into S phase in both the first and second 24-hr period. In earlier toxicological studies, the survival rate of hamsters was dependent on the time of injection and was highest after injection at 1200 hr. Thus maximum cytokinetic effect on epithelial cells was found at the time of the day when there was a minimum lethal effect on the animal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.