Abstract
Cisplatin is one of the most commonly used anticancer drugs. It kills cancer cells by damaging their DNA, and hence cellular DNA repair capacity is an important determinant of its efficacy. Here, we investigated the repair of cisplatin-induced DNA damage in mouse liver and testis tissue extracts prepared at regular intervals over the course of a day. We find that the XPA protein, which plays an essential role in repair of cisplatin damage by nucleotide excision repair, exhibits circadian oscillation in the liver but not in testis. Consequently, removal of cisplatin adducts in liver extracts, but not in testis extracts, exhibits a circadian pattern with zenith at approximately 5 pm and nadir at approximately 5 am. Furthermore, we find that the circadian oscillation of XPA is achieved both by regulation of transcription by the core circadian clock proteins including cryptochrome and by regulation at the posttranslational level by the HERC2 ubiquitin ligase. These findings may be used as a guide for timing of cisplatin chemotherapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.