Abstract

Background/Aims: Circular RNAs (circRNAs) are a family of novel non-coding RNAs associated with various diseases, especially cancer. Recent studies have demonstrated that circRNAs participate in pathogenesis mainly by acting as microRNA (miRNA) sponges. The expression profile of circRNAs in acute myeloid leukemia (AML) has rarely been reported. Methods: Profiles of circRNAs were analyzed using an Arraystar human circRNA microarray with 5 bone marrow samples from patients with newly diagnosed AML and 5 from patients with iron-deficiency anemia. Quantitative reverse transcription PCR was used to validate the expression pattern of circRNAs. Furthermore, circRNA–miRNA network, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were applied. Results: CircRNA microarray analysis revealed that 698 circRNAs were differentially expressed in AML patients, with 282 circRNAs found to be upregulated and 416 to be downregulated. Quantitative reverse transcription PCR showed that circ-ANAPC7 was significantly upregulated in AML. Bioinformatics analysis predicted that circ-ANAPC7 acts as a sponge for the miR-181 family, KEGG analysis revealed that it is associated with cancer-related pathways, and GO analysis indicated that most of its target genes are involved in biological processes. Conclusions: These findings show that circ-ANAPC7 is a promising biomarker for AML, and that it might participate in AML pathogenesis by acting as a sponge for the miR-181 family.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.