Abstract

Environmental (pH, temperature ionic strength, cations, anions) and process (pyrolysis temperature, particle size, adsorbent dosage, initial concentration) parameters were evaluated for ciprofloxacin and acetaminophen sorption onto a series of sustainable banana peel biochars. Ciprofloxacin and acetaminophen were chosen as model pharmaceuticals for removal owing to their worldwide presence in aquatic systems. After pyrolytic preparation from 450 to 750 °C, the biochars were qualitatively and quantitatively characterized by physicochemical, morphological, mineralogical and elemental analyses. Batch sorption studies were employed to evaluate the pH effects from 2 to 10, biochar pyrolysis temperatures (450, 550, 650, and 750 °C), particle sizes (30–50, 50–100, 100–150 BSS mesh), adsorbent dosages (0.5, 1.0, 2.0 g/L), adsorbate concentrations (0.5–200 ppm) and uptake temperatures (10, 25, 40 °C) on sorption efficiency. Maximum pharmaceutical sorption is achieved by the biochar prepared at 750 °C. Sorption rate increased with decrease in biochar particle size from 30 to 50 to 100–150 BSS mesh. Relationships between biochar properties and their sorptive potential showed positive correlations with surface area, total pore volume, %C, %ash and C/N molar ratios. Sorption data was modelled using different isotherm models and both kinetic and thermodynamic equations. Maximum Langmuir capacities of ciprofloxacin and acetaminophen on BPBC750 were 23.3 and 40.8 mg/g at 10 °C; 21.0 and 49.93 mg/g at 25 °C and 20.42 and 57.3 mg/g at 45 °C, respectively. Langmuir isotherm fittings and thermodynamic parameters confirmed the exothermic sorption (for ciprofloxacin) and endothermic sorption (for acetaminophen). The role of ionic strength, cations and anions on pharmaceuticals sorption were evaluated. H-bonding, π-π-interactions and pore diffusion were major contributors to pharmaceutical sorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.