Abstract

INTRODUCTION: Traditionally, studies regarding oxygen consumption kinetics are conducted at lower intensities, very different from those in which the sports performance occurs. OBJECTIVE: Knowing that the magnitude of this physiological parameter depends on the intensity in which the effort occurs, it was intended with this study compare the oxygen consumption kinetics in the 200 m front crawl at two different intensities: moderate and extreme. METHODS: Ten international male level swimmers two separate tests by 24h: (i) progressive and intermittent protocol of 7 x 200 m, with 30 seconds intervals and with increments of 0.05m.s-1, to determine the anaerobic threshold correspondent step; and, (ii) 200 m at maximal velocity: in both expiratory gases were continuously collected breath-by-breath. RESULTS: Significant differences were obtained between amplitude and time constant determine in the 200 m at extreme and moderate intensities, respectively (38,53 ± 5,30 ml. kg-1.min-1 versus 26,32 ± 9,73 ml. kg-1.min-1 e 13,21 ± 5,86 s versus 18,89 ± 6,53 s (p ≤ 0,05). No differences were found in time delay (9,47 ± 6,42 s versus 12,36 ± 6,62 s, at extreme and moderate intensity, respectively (p ≤ 0.05). A negative correlation between time delay and time constant at the moderate intensity was reported (r = - 0,74, p ≤ 0,05). CONCLUSIONS: Both intensities were well described by double-exponential fittings, and there were significant differences between them in terms of amplitude and time constant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.