Abstract

The NIH identified that most microbial infections are biofilm-associated. Bacterial biofilm formation in human infection is of great concern to public health, as it has been associated with increased antimicrobial resistance, decreased effectiveness of host response, chronicity of infection, and medical device-associated disease. The pathogen, methicillin-resistant Staphylococcus aureus (MRSA), warrants special attention since it has been a frequent culprit in hospital- and community-acquired infections, is known to form biofilms in vivo, and is notoriously resistant to antimicrobics. This study sought to inhibit biofilm formation and/or reduce MRSA viability using the phytochemical cinnamaldehyde, which has been widely studied as an antimicrobial agent as well as a quorum sensing inhibitor. Clinical MRSA isolates from area hospital laboratories were assessed for cinnamaldehyde effect using a: (i) microplate assay for quantitative spectrophotometric evaluation of crystal violet-stained biofilm adherent to microwells; and (ii) viable bacterial count assay for colony forming unit (CFU/ml) enumeration. Results indicated that cinnamaldehyde inhibited MRSA biofilm formation in a concentration-dependent manner with significance (p ABBREVIATIONS:MRSA – methicillin-resistant S. aureus,MSSA – methicillin-susceptible S. aureus,TSB – tryptic soy broth

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.