Abstract

Spatially homogeneous and isotropic cosmological models, with a perfect fluid matter source and non-vanishing cosmological constant, are studied. The equations governing linear perturbations of the space-time and the variation of energy density are given. The complete solution of the problem is obtained for $C^{\infty}$ perturbations, using a comoving time. The Sachs-Wolfe fluctuations of the temperature of the cosmic background radiation are obtained for the relatively growing density perturbations. It is found that the observable celestial microwave fluctuation pattern underwent a reversal approximately two billion years ago. What is observed today is a negative image of the last scattering surface with an attenuation of the fluctuations, due to the presence of the cosmological constant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.