Abstract
To propose a new black-blood (BB) pulse sequence that provides BB cine cardiac images with high blood-myocardium contrast. The proposed technique is based on the conventional steady-state free precession (SSFP) sequence. Numerical simulations of the Bloch equation were conducted to compare the resulting signal-to-noise ratio (SNR) to that of conventional BB imaging, including the effects of changing the imaging flip angle and heart rates. Simulation results were verified using a gel phantom experiment and five normal volunteers were scanned using the proposed technique. The new sequence showed higher SNR and contrast-to-noise ratio (CNR) (approximately 100%) compared to the conventional BB imaging. Also, the borders of the left ventricle (LV) and right ventricle (RV) appear more distinguishable than the conventional SSFP. We were also able to cover about 80% of the cardiac cycle with short breath-hold time (approximately 10 cardiac cycles) and with reasonable SNR and CNR. Based on an SSFP conventional sequence, the new sequence provides BB cines that cover most of the cardiac cycle and with higher SNR and CNR than the conventional BB sequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.