Abstract

Triglyceride-rich lipoprotein-bound endotoxin (CM-LPS) inhibits the host innate immune response to sepsis by attenuating the hepatocellular response to pro-inflammatory cytokine stimulation. This 'cytokine tolerance' in hepatocytes is a transient, receptor-dependent process that correlates with internalization of CM-LPS via low density lipoprotein (LDL) receptors. Since endothelial cells are integral to the immune response and similarly express LDL receptors, we hypothesized that CM-LPS could be internalized and ultimately attenuate the deleterious effects of pro-inflammatory molecules like tumor necrosis factor-α (TNF-α) and platelet activating factor (PAF) on endothelial permeability. Here, we show that CM-LPS complexes induce cytokine tolerance in endothelial cells. In rats, TNF-α increased hydraulic conductivity 2.5-fold over baseline and PAF increased it 5-fold; but, pretreatment with CM-LPS or an attenuated analog (CM-LPS*) inhibited these changes. Nuclear/cytoplasmic levels of p65 were reduced after TNF-α-stimulation in endothelial cell monolayers pretreated with CM-LPS, a finding consistent with inhibition of nuclear factor (NF)-κB translocation. Also consistent with inhibition was stabilized intercellular adhesion, as illustrated with antibody to VE-cadherin using confocal microscopy. These results provide additional support for the integral role of lipoproteins in the innate immune response to infection and lend further credence to developing lipid-based therapy for Gram-negative sepsis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.