Abstract

Objectives: The study seeks to evaluate the effect of chrysin; a natural, biologically active compound extracted from plants, honey or propolis, on the tissues and circulatory antioxidant status and lipid peroxidation in Nω-nitro-l-arginine methyl ester (L-NAME) induced hypertensive rats. Materials and Methods: Male albino rats were divided into four groups. Control (Group I) and chrysin supplementation of the control (Group II) received normal diet. Groups III and IV received L-NAME (40 mg/kg B.W). Groups II and IV received chrysin (25 mg/kg B.W) dissolved in 0.2% dimethylsulfoxide solution after the 4 th week. Results and Discussion: The results showed significantly elevated levels of tissue and circulatory thiobarbituric acid reactive substances, conjugated dienes and lipid hydroperoxides, and significantly lowered enzymic and non-enzymic antioxidant activity of superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione, vitamin C and vitamin E in L-NAME-induced hypertensive rats compared with those in control group. From chrysin administration to rats with L-NAME-induced hypertension leads to tissue damage which significantly decreases the levels of thiobarbituric acid reactive substances, lipid hydroperoxides and conjugated dienes, and significantly elevates the activity of superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione, vitamin C and vitamin E in the tissues and circulation compared with those on the unsupplemented L-NAME induced hypertensive group. Conclusions: Chrysin offers protection against free radical-mediated oxidative stress in rats with L-NAME-induced hypertension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.