Abstract

Cancer stem cells (CSCs) have been suggested to represent the main cause of tumour progression, metastasis and drug resistance. Therefore, these cells can be an appropriate target to improve cancer treatment. A novel biodegradable brush copolymeric micelle was synthesized by the ring-opening polymerization (ROP) and reversible addition-fragmentation chain transfer (RAFT) polymerization. The obtained micelle was used for co-delivery of the anticancer drug docetaxel (DTX) and Chrysin (CHS) as an adjuvant on the CSCs originated from Human colon adenocarcinoma cell line. Cancer stem cells were enriched by MACS technique and characterized by flow cytometry analysis against CD133 marker. Data demonstrated that the micelles harbouring DTX@CHS had potential to reduce cancer stem cell viability compared to free DTX@CHS, single-drug formulations and the control group (p < 0.05). The combination effect of DTX and CHS formulated in micelle was synergistic in CSCs (CI < 1). The reactive oxygen species content was shown to increase after cell treatment with DTX@CHS loaded on micelles (p< 0.05). DTX@CHS-micelles inhibited cancer stem cell migration rate in vitro (p< 0.05), indicating an impaired metastasis activity. In conclusion, the synthesized DOX@CHS-micelles can be applied in the introduction of anticancer agents to resistant cancer population by further investigations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.