Abstract

In this work, potential step chronoamperometry (PSCA) was used to study the behaviour of arrays of nanoscale interfaces between two immiscible electrolyte solutions (nanoITIES). The nanoITIES arrays were formed at nanoporous silicon nitride membranes containing 400 nanopores in a hexagonal close-packed arrangement. Three membrane designs, with nanopore radii of 75, 50 and 17nm, were studied by ion-transfer of tetrapropylammonium cations across the nanopore array-supported water|1,6-dichlorohexane interface. The cell time constants and charging times were determined prior to experimental PSCA. The three membrane designs studied exhibited charging times in the range of 0.08–0.46s, with the smallest pore configuration (17nm radius) exhibiting the longest charging time. The experimental steady-state currents were 30–50% lower than of the calculated inlaid disc model currents, due to diffusion zone overlap at adjacent interfaces. The three nano-interface arrays studied also showed response times of 6±1s, being the time required to reach 95% of the steady-state current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.