Abstract

Dysregulation of stress granules (SGs) and their resident proteins contributes to pathogenesis of a number of (neuro)degenerative diseases. Phosphorylation of eIF2α is an event integrating different types of cellular stress and it is required for SG assembly. Phosphorylated eIF2α (p-eIF2α) is upregulated in the nervous system in some neurodegenerative conditions. We found that increasing p-eIF2α level by proteasomal inhibition in cultured cells, including mouse and human neurons, before a SG-inducing stress (‘stress preconditioning’), limits their ability to maintain SG assembly. This is due to upregulation of PP1 phosphatase regulatory subunits GADD34 and/or CReP in preconditioned cells and early decline of p-eIF2α levels during subsequent acute stress. In two model systems with constitutively upregulated p-eIF2α, mouse embryonic fibroblasts lacking CReP and brain neurons of tau transgenic mice, SG formation was also impaired. Thus, neurons enduring chronic stress or primed by a transient mild stress fail to maintain p-eIF2α levels following subsequent acute stress, which would compromise protective function of SGs. Our findings provide experimental evidence on possible loss of function for SGs in certain neurodegenerative diseases.

Highlights

  • Stress granules (SGs) are cytoplasmic RNA–protein macrocomplexes that form as a normal cellular response to a moderate-to-severe stress and serve to protect cellular RNAs from degradation until translation can be safely restored.[1]

  • SGs are believed to be protective under stress because they guard sensitive transcripts, and because they participate in signaling events including anti-apoptotic signals,[2,3,4] favor translation of molecular chaperones/other cytoprotective proteins[1] and help adjusting cellular translation rates to accumulation of misfolded proteins that accompany some types of stress.[5]

  • A growing list of SG proteins have been implicated in neurodegenerative conditions, primarily amyotrophic lateral sclerosis (ALS) and a related condition, frontotemporal lobar degeneration (FTLD); many of them are modified by mutations in the encoding genes in these diseases

Read more

Summary

Introduction

Stress granules (SGs) are cytoplasmic RNA–protein macrocomplexes that form as a normal cellular response to a moderate-to-severe stress and serve to protect cellular RNAs from degradation until translation can be safely restored.[1]. SG formation is tightly linked to phosphorylation of the translation initiation factor eIF2α The latter event depletes the eIF2/tRNAiMet/GTP ternary complex required for translation initiation causing translational arrest, polysome disassembly and eventually SG assembly.[13] Increased levels of p-eIF2α have been detected in the nervous system of patients with some neurodegenerative conditions such as Alzheimer’s disease and prion disorders,[14,15,16] as well as animal models of neurodegeneration.[17,18,19,20] SG formation in most cases requires elevated p-eIF2α levels, it is still not clear how SG formation would be modulated by the presence of increased ‘basal’ (pre-stress) p-eIF2α levels. Short-term or chronic elevation of p-eIF2α levels, when coupled with upregulation of its phosphatase, impairs the ability of cells, including neurons in vitro and in vivo, to maintain SG assembly following a SG-inducing stress

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.