Abstract

Previous studies on paternal epigenetic inheritance have shown that sperm RNAs play a role in this type of inheritance. The microinjection of sperm small noncoding RNAs into fertilised mouse oocytes induces reprogramming of the early embryo, which is thought to be responsible for the differences observed in adult phenotype. While sperm long noncoding RNAs (lncRNAs) have also been investigated in a previous study, their microinjection into fertilised oocytes did not yield conclusive results regarding their role in modulating brain development and adult behavioural phenotypes. Therefore, in the current study we sought to investigate this further. We used our previously established paternal corticosterone (stress hormone) model to assess sperm lncRNA expression using CaptureSeq, a sequencing technique that is more sensitive than the ones used in other studies in the field. Paternal corticosterone exposure led to dysregulation of sperm long noncoding RNA expression, which encompassed lncRNAs, circular RNAs and transposable element transcripts. Although they have limited functional annotation, bioinformatic approaches indicated the potential of these lncRNAs in regulating brain development and function. We then separated and isolated the sperm lncRNAs and performed microinjections into fertilised oocytes, to generate embryos with modulated lncRNA populations. We observed that the resulting adult offspring had lower body weight and altered anxiety and affective behavioural responses, demonstrating roles for lncRNAs in modulating development and brain function. This study provides novel insights into the roles of lncRNAs in epigenetic inheritance, including impacts on brain development and behaviours of relevance to affective disorders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.