Abstract
Alterations in nitric oxide (NO) and endothelin-1 (ET-1) production have recently been reported in erythropoietin (r-HuEPO)-induced hypertension in renal failure rats. The present study was designed to evaluate the effect of NO synthase inhibition with the L-arginine analog NG-nitro-L-arginine methyl ester (L-NAME) on blood pressure (BP) and ET-1 production in control and in uremic rats treated or not treated with r-HuEPO. Renal failure was induced by a two-stage 5/6 nephrectomy. Control and uremic rats were studied separately and subdivided into four groups: vehicle, r-HuEPO, L-NAME + vehicle and L-NAME + r-HuEPO. L-NAME (100 mg/kg/day), r-HuEPO (100 U/kg, subcutaneously, three times per week), the vehicle or both were administered during 4 weeks in control rats and during 2 weeks in uremic rats. Systolic BP was recorded before and after the onset of treatment at weeks 2 and 4 in control rats and at weeks 1 and 2 in uremic rats. Hematocrit, serum creatinine, plasma, blood vessel (thoracic aorta and mesenteric artery bed) and renal cortex immunoreactive (ir) ET-1 concentrations were measured at the end of the protocol. L-NAME enhanced BP in control and uremic rats and the increase was significantly higher in uremic rats under r-HuEPO therapy (222 ± 7 mmHg vs 198 ± 6 mmHg, p<0.05). L-NAME induced an increase in thoracic aorta ir-ET-1 concentrations in control and uremic rats. In contrast, ir-ET-1 concentrations were unchanged in the mesenteric arterial bed and the renal cortex of control and uremic animals. R-HuEPO increased thoracic aorta ir-ET-1 contents in L-NAME treated control and uremic rats. These results underline the important role of NO release in opposing the action of vasopressors on blood vessel tone which appears more important in uremic rats treated with r-HuEPO. L-NAME treatment increased large vessel, but not small resistance artery ir-ET-1 concentrations, suggesting differential regulation of ET-1 production in different vascular beds under chronic NO synthase inhibition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.