Abstract

This study explored arterial remodelling in fetuses growth restricted by hypoxia. Chronically catheterized fetal sheep were made moderately or severely hypoxic by placental embolization for 15 days starting at gestational age 116-118 (term ∼147 days). Cross-sections of the aorta were analysed for collagen and elastin content using histological procedures, while immunofluorescence was applied to measure markers of vascular smooth muscle cell (VSMC) type. In frozen aortae quantitative PCR was used to measure mRNA levels of extracellular matrix (ECM) precursor proteins as well as molecular regulators of developmental and pathological remodelling. Relative to Control (n =6), aortic wall thickness was increased by 23% in the Moderate group (n =5) and 33% (P <0.01) in the Severe group (n =5). Relative to Control, the Severe group exhibited a 5-fold increase in total collagen content (P <0.01) that paralleled increases in mRNA levels of procollagen I (P <0.05) and III and transforming growth factor β (TGF-β1) (P <0.05). The percentage area stained for α-actin was inversely related to fetal arterial oxygen saturation (P <0.05) and total α-actin content was 45% higher in the Moderate group and 65% (P <0.05) higher in the Severe group, compared to Control. A 12% and 39% (P <0.05) reduction in relative elastic fibre content was observed in Moderate and Severe fetuses, respectively. mRNA levels of the elastolytic enzyme, matrix metalloproteinase-2 (MMP-2) were inversely correlated with fetal arterial oxygen saturation (P <0.05) (Fig. 7) and mRNA levels of its activator, membrane-type MMP (MTI-MMP), were elevated in the Severe group (P <0.05). Marked neointima formation was apparent in Severe fetuses (P <0.05) concomitant with an increase in E-selectin mRNA expression (P <0.05). Thus, aberrant aortic formation in utero mediated by molecular regulators of arterial growth occurs in response to chronic hypoxaemia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.