Abstract

Pharmacologically targeting activated STAT3 and/or STAT5 has been an active area of cancer research. The cystine/glutamate antiporter, system xc-, contributes to redox balance and export of intracellularly produced glutamate in response to up-regulated glutaminolysis in cancer cells. We have previously shown that blocking STAT3/5 using the small molecule inhibitor, SH-4-54, which targets the SH2 domains of both proteins, increases xCT expression, thereby increasing system xc- activity in human breast cancer cells. The current investigation demonstrates that chronic SH-4-54 administration, followed by clonal selection of treatment-resistant MDA-MB-231 and T47D breast cancer cells, elicits distinct subtype-dependent effects. xCT mRNA and protein levels, glutamate release, and cystine uptake are decreased relative to untreated passage-matched controls in triple-negative MDA-MB-231 cells, with the inverse occurring in estrogen-responsive T47D cells. This “ying-yang” effect is linked with a shifted balance between the phosphorylation status of STAT3 and STAT5, intracellular ROS levels, and STAT5 SUMOylation/de-SUMOylation. STAT5 emerged as a definitive negative regulator of xCT at the transcriptional level, while STAT3 activation is coupled with increased system xc- activity. We propose that careful classification of a patient’s breast cancer subtype is central to effectively targeting STAT3/5 as a therapeutic means of treating breast cancer, particularly given that xCT is emerging as an important biomarker of aggressive cancers.

Highlights

  • Aggressive cancer cells adapt to increased levels of reactive oxygen species (ROS) that accompany their dysregulated metabolism by up-regulating the activity of the plasma membrane antiporter, system xc, which releases glutamate in exchange for cystine taken up from the extracellular environment

  • Phospho-STAT3 levels were significantly lower in MDA-MB-231 resistant clones relative to wild-type MDA-MB-231 cells, with the inverse occurring in T47D resistant clones in which phospho-STAT3 levels increased by approximately 3-fold relative to their respective untreated wild-type counterpart (Fig 1A)

  • In addition to the 95 kDa phospho-STAT5 band induced by PRL stimulation of T47D cells, a prominent 130 kDa and very weak 200 kDa band were detected after prolonged exposure (Fig 1C), which matched the banding pattern observed in MDA-MB-231 wild-type cells treated with PRL (Fig 1D)

Read more

Summary

Introduction

Aggressive cancer cells adapt to increased levels of reactive oxygen species (ROS) that accompany their dysregulated metabolism by up-regulating the activity of the plasma membrane antiporter, system xc-, which releases glutamate in exchange for cystine taken up from the extracellular environment. Heterodimers of xCT4F2hc may complex with a variant of the CD44 cell adhesion molecule (CD44v) [3]. Of these components, xCT most prominently influences the function of system xc-, with high expression levels correlating with higher antiporter activity [2]. It has been suggested that insufficient xCT expression may sensitize cancer cells to ROS-mediated damage [3,4] and potentially curb their rapid proliferation [5] and metastatic potential [6]. It has been speculated that high levels of xCT may be an indicator of chemo- and radiation therapy resistance [7], making it a target for novel drug development

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.