Abstract

Tomato (Solanum lycopersicum L.) is one of the most widely cultivated crops in the world. Tomato is a plant model and the relationship between yield and biotic/abiotic stress has attracted increasing scientific interest. Tomato cultivation under sub-optimal conditions usually negatively impacts growth and development; in particular, heat stress affects several cellular and metabolic processes, such as respiration and photosynthesis. In this work, we studied the effects of chronic heat stress on various cytological and biochemical aspects using the Micro-Tom cultivar as a model. Photosynthetic efficiency decreased during heat stress while levels of post-photosynthetic sugars (sucrose, fructose, glucose and glucose 6-phosphate) oscillated during stress. Similarly, photosynthetic pigments (lutein, chlorophyll a, chlorophyll b and β-carotene) showed an oscillating downward trend with partial recovery during the stress-free phase. The energetic capacity of leaves (e.g. ATP and ADP) was altered, as well as the reactive oxygen species (ROS) profile; the latter increased during stress. Important effects were also found on the accumulation of Rubisco isoforms, which decreased in number. Heat stress also resulted in a decreased accumulation of lipids (oleic and linoleic acid). Photosynthetically alterations were accompanied by cytological changes in leaf structure, particularly in the number of lipid bodies and starch granules. Prolonged heat stress progressively compromised the photosynthetic efficiency of tomato leaves. The present study reports multi-approach information on metabolic and photosynthetic injuries and responses of tomato plants to chronic heat stress, highlighting the plant's ability to adapt to stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.