Abstract
Endothelin-1 (ET-1) is a potent vasoconstrictor peptide elaborated by many cell types. Plasma ET-1 levels are significantly augmented in patients and experimental animals with heart failure. Enhanced levels of ET-1 may contribute to myocardial depression and alterations in sympathetic nerve activity in the setting of chronic heart failure. The effects of chronic blockade of endothelin A (ET(A)) receptors on the development and severity of experimental heart failure and sympathoexcitation were evaluated in these experiments using the specific ET(A) antagonist, PD156707. Four groups of conscious, chronically instrumented mongrel dogs were administered either PD156707 (750 mg orally thrice daily) or a placebo starting 1 day before ventricular pacing or a sham (nonpaced) period. Before pacing or the sham period, baseline hemodynamic and plasma norepinephrine (NE) measurements were made. Hemodynamic and NE measurements were made every 3 to 4 days for the next 28 days. All parameters were relatively stable in nonpaced dogs administered placebo. Paced placebo dogs showed classic hemodynamic and sympathoexcitatory changes indicative of heart failure. Nonpaced dogs administered PD156707 showed a significant decrease in mean arterial pressure and total peripheral resistance beginning 3 days after drug administration. Myocardial function was not affected by PD156707 in nonpaced dogs. In paced dogs, PD156707 also reduced arterial pressure and peripheral resistance. Changes in myocardial function were small and insignificant. Paced dogs administered PD156707 showed an approximately 50% lower increase in plasma NE level from days 10 to 24 compared with paced dogs administered placebo (941.8 +/- 122.8 vs 501.1 +/- 92.6 pg/mL at 17 days; P < .01). These data suggest that ET-1 contributes to the maintenance of arterial pressure in both sham dogs and dogs paced into heart failure. ET-1 does not appear to have a potent effect on inotropic state, but the data strongly suggest that ET-1 may contribute to the progressive deterioration of circulatory function in heart failure by mediating sympathoexcitation and enhancing plasma NE concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.