Abstract
With big data growth in biomedical and healthcare communities, accurate analysis of medical data benefits early disease detection, patient care and community services. However, the analysis accuracy is reduced when the quality of medical data is incomplete. Moreover, different regions exhibit unique characteristics of certain regional diseases, which may weaken the prediction of disease outbreaks. In this paper, we streamline machine-learning algorithms for effective prediction of chronic disease outbreak in disease-frequent communities. We experiment the modified prediction models over real-life hospital data collected from central China in 2013-2015. To overcome the difficulty of incomplete data, we use a latent factor model to reconstruct the missing data. We experiment on a regional chronic disease of cerebral infarction. To the best of our knowledge, none of the existing work focused on both data types in the area of medical big data analytics. Compared to several typical prediction algorithms, the prediction accuracy of our proposed algorithm reaches 94.8% with a convergence speed which is faster than that of the CNN-based unimodal disease risk prediction (CNN-UDRP) algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Scientific Research in Computer Science, Engineering and Information Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.