Abstract

Impaired Cl– Extrusion in Layer V Pyramidal Neurons of Chronically Injured Epileptogenic Neocortex Jin X, Huguenard JR, Prince DA J Neurophysiol 2005;93:2117–2126 In the mature brain, the K+/Cl– cotransporter KCC2 is important in maintaining low [Cl–]i, resulting in hyperpolarizing GABA responses. Decreases in KCC2 after neuronal injuries result in increases in [Cl–]i and enhanced neuronal excitability due to depolarizing GABA responses. We used the gramicidin perforated-patch technique to measure ECl(∼ EGABA) in layer V pyramidal neurons in slices of partially isolated sensorimotor cortex of adult rats to explore the potential functional consequence of KCC2 downregulation in chronically injured cortex. EGABA was measured by recording currents evoked with brief GABA puffs at various membrane potentials. No significant difference was found in ECl between neurons in control and undercut animals (–71.2 ± 2.6 and −71.8 ± 2.8 mV, respectively). However, when loaded with Cl– by applying muscimol puffs at 0.2 Hz for 60 seconds, neurons in the undercut cortex had a significantly shorter time constant for the positive shift in ECl during the Cl– loading phase (4.3 ± 0.5 s for control and 2.2 ± 0.4 s for undercut; p < 0.01). The positive shift in ECl 3 seconds after the beginning of Cl– loading was also significantly larger in the undercut group than in the control, indicating that neurons in undercut cortex were less effective in maintaining low [Cl–]i during repetitive activation of GABAA receptors. Application of furosemide eliminated the difference between the control and undercut groups for both of these measures of [Cl–]i regulation. The results suggest an impairment in Cl– extrusion resulting from decreased KCC2 expression that may reduce the strength of GABAergic inhibition and contribute to epileptogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.