Abstract
Chromophore-containing quench agents 2 and 3 enable quantitative active site counting and determination of the mass distribution of active catalyst polymeryls by refractive index (RI) and UV detected gel permeation chromatography (GPC) for the polymerization of 1-hexene catalyzed by (EBI)ZrMe2/B(C6F5)3. Time evolution of catalyst speciation data and the time profiles of monomer consumption, end-group generation, and bulk molecular weight distribution data have been analyzed by kinetic modeling to determine rate constants for initiation by insertion of hexene into a Zr–Me bond (ki), propagation (kp), chain transfer to form vinylidene (k1,2) and vinylene (k2,1) end groups, and reinitiation from a Zr–H bond (kr). Unlike previous models that assumed fast catalyst reinitiation, this analysis reveals that kr is considerably slower than kp; catalyst speciation data are critical to making this distinction. This study demonstrates that chromophore quench-labeling with 2 and 3 enables rapid, quantitative analysis o...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.