Abstract
This paper is a continuation of the Waterloo Research Report CORR 81-12, (see [1]) referred to in what follows as I. That Report is entitled “Chromatic Solutions”. It is largely concerned with a power series h in a variable z2, in which the coefficients are polynomials in a “colour number” λ. By definition the coefficient of z2r, where r > 0, is the sum of the chromatic polynomials of the rooted planar triangulations of 2r faces. (Multiple joins are allowed in these triangulations.) Thus for a positive integral λ the coefficient is the number of λ-coloured rooted planar triangulations of 2r faces. The use of the symbol z2 instead of a simple letter t is for the sake of continuity with earlier papers.In I we consider the case(1)where n is an integer exceeding 4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.