Abstract
The testing for goodness-of-fit in multinomial sampling contexts is usually based on the asymptotic distribution of Pearson-type chi-squared statistics. However, approximations are not justified for those cases where sample size and number of cells permit the use of adequate algorithms to calculate the exact distribution of test statistics in a reasonable time. In particular, Rukhin statistics, containing χ 2 and Neyman's modified χ 2 statistics, are considered for testing uniformity. Their exact distributions are calculated for different sample sizes and number of cells. Several exact power comparisons are carried out to analyse the behaviour of selected statistics. As a result of the numerical study some recommendations are given. Conclusions may be extended to testing the goodness of fit to a given absolutely continuous cumulative distribution function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.