Abstract
Autologous chondrocyte implantation (ACI) is a cell therapy to repair cartilage defects. In ACI a biopsy is taken from a non-load bearing area of the knee and expanded in-vitro. The expansion process provides the benefit of generating a large number of cells required for implantation; however, during the expansion these cells de-differentiate and lose their chondrocyte phenotype. In this review we focus on examining the de-differentiation phenotype from a mechanobiology and biophysical perspective, highlighting some of the nuclear mechanics and chromatin changes in chondrocytes seen during the expansion process and how this relates to the gene expression profile. We propose that manipulating chondrocyte nuclear architecture and chromatin organization will highlight mechanisms that will help to preserve the chondrocyte phenotype.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.