Abstract

Alternative splicing is an important mechanism for expanding proteome diversity from a limited number of genes, especially in higher vertebrates. Brain-specific splicing factors play an important role in establishing specific patterns of alternative splicing in the brain and thereby contribute to its complex architecture and function. Nova proteins are splicing factors that are expressed specifically in the central nervous system, where they regulate a large number of pre-mRNAs encoding synaptic proteins that are important for the balance of neuronal excitation and inhibition. Since this balance is interrupted in epileptic seizures, we explored whether LiCl/pilocarpine- or kainate-induced epileptic seizures would induce changes in the levels of Nova mRNAs in the rat brain. We found that the muscarinic agonist, pilocarpine, but not the glutamatergic agonist, kainate, induced a significant downregulation of Nova2 mRNA and upregulation of all three Nova1 mRNA isoforms in the striatum. Treatment with the muscarinic antagonist, scopolamine, at the onset of pilocarpine-induced seizures inhibited the seizures and the changes in Nova mRNA levels. Therefore it seems likely that pilocarpine stimulation of muscarinic acetylcholine receptors was a prerequisite for the observed changes, while the contribution of other striatal neurotransmitter systems activated by seizures could not be excluded. We propose that the LiCl/pilocarpine seizure model could serve as a valuable tool for studying mechanisms of Nova-regulated alternative splicing in rat striatum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.